183 research outputs found

    Eclipsing binaries observed with the WIRE satellite. II, β Aurigae and non-linear limb darkening in light curves

    Get PDF
    Aims. We present the most precise light curve ever obtained of a detached eclipsing binary star and use it investigate the inclusion of non-linear limb darkening laws in light curve models of eclipsing binaries. This light curve, of the bright eclipsing system β Aurigae, was obtained using the star tracker aboard the wire satellite and contains 30 000 datapoints with a point-to-point scatter of 0.3mmag. Methods. We analyse the wire light curve using a version of the ebop code modified to include non-linear limb darkening laws and to directly incorporate observed times of minimum light and spectroscopic light ratios into the photometric solution as individual observations. We also analyse the dataset with the Wilson-Devinney code to ensure that the two models give consistent results. Results. ebop is able to provide an excellent fit to the high-precision wire data.Whilst the fractional radii of the stars are only defined to a precision of 5% by this light curve, including an accurate published spectroscopic light ratio improves this dramatically to 0.5%. Using non-linear limb darkening improves the quality of the fit significantly compared to the linear law and causes the measured radii to increase by 0.4%. It is possible to derive all of the limb darkening coefficients from the light curve, although they are strongly correlated with each other. The fitted coefficients agree with theoretical predictions to within their fairly large error estimates. We were able to obtain a reasonably good fit to the data using the Wilson-Devinney code, but only using the highest available integration accuracy and by iterating for a long time. Bolometric albedos of 0.6 were found, which are appropriate to convective rather than radiative envelopes. Conclusions. The radii and masses of the components of β Aur are RA = 2.762 ± 0.017 R, RB = 2.568 ± 0.017 R, MA = 2.376 ±0.027 M and MB = 2.291 ± 0.027 M, where A and B denote the primary and secondary star, respectively. Theoretical stellar evolutionary models can match these parameters for a solarmetal abundance and an age of 450−500 Myr. The Hipparcos trigonometric parallax and an interferometrically-derived orbital parallax give distances to β Aur which are in excellent agreement with each other and with distances derived using surface brightness relations and several sets of empirical and theoretical bolometric corrections

    Modelling of the fast rotating delta Scuti star Altair

    Full text link
    We present an asteroseismic study of the fast rotating star HD187642 (Altair), recently discovered to be a delta Scuti pulsator. We have computed models taking into account rotation for increasing rotational velocities. We investigate the relation between the fundamental radial mode and the first overtone in the framework of Petersen diagrams. The effects of rotation on such diagrams, which become important at rotational velocities above 150 km/s, as well as the domain of validity of our seismic tools are discussed. We also investigate the radial and non-radial modes in order to constrain models fitting the five most dominant observed oscillation modes.Comment: Accepted for publication in A&A (11 pages, 6 figures, 4 tables

    Evidence for Granulation and Oscillations in Procyon from Photometry with the WIRE satellite

    Full text link
    We report evidence for the granulation signal in the star Procyon A, based on two photometric time series from the star tracker on the WIRE satellite. The power spectra show evidence of excess power around 1 milliHz, consistent with the detection of p-modes reported from radial velocity measurements. We see a significant increase in the noise level below 3 milliHz, which we interpret as the granulation signal. We have made a large set of numerical simulations to constrain the amplitude and timescale of the granulation signal and the amplitude of the oscillations. We find that the timescale for granulation is T(gran) = 750(200) s, the granulation amplitude is 1.8(0.3) times solar, and the amplitude of the p-modes is 8(3) ppm. We found the distribution of peak heights in the observed power spectra to be consistent with that expected from p-mode oscillations. However, the quality of the data is not sufficient to measure the large separation or detect a comb-like structure, as seen in the p-modes of the Sun. Comparison with the recent negative result from the MOST satellite reveal that the MOST data must have an additional noise source that prevented the detection of oscillations.Comment: 23 pages, 12 figures, submitted to ApJ; v2 revisions: one reference corrected and a comment in Figure 7 correcte

    Oscillations in Arcturus from WIRE photometry

    Full text link
    Observations of the red giant Arcturus (Alpha Boo) obtained with the star tracker on the Wide Field Infrared Explorer (WIRE) satellite during a baseline of 19 successive days in 2000 July-August are analysed. The amplitude spectrum has a significant excess of power at low-frequencies. The highest peak is at about 4.1 micro-Hz (2.8 d), which is in agreement with previous ground-based radial velocity studies. The variability of Arcturus can be explained by sound waves, but it is not clear whether these are coherent p-mode oscillations or a single mode with a short life-time.Comment: 6 pages, 1 Latex file, 4 .eps figures, 2 .sty files, ApJL, 591, L151 See erratum (astro-ph/0308424

    Gyrochronology of Wide Binaries in the Kepler K2 Campaign 5 Field

    Get PDF
    We are determining rotation periods for an ensemble of over 100 wide non-interacting binary stars in the K2 Campaign 5 field that contain two main sequence dwarfs, as well as a smaller sample containing at least one white dwarf component. Observations of such coeval pairs provide the basis for our new investigation of rotation-based age determinations. Such “gyrochronology” ages can achieve a precision that exceeds most other current method of stellar age determination. Here we present a status report on our analysis of the light curves extracted from the K2 Campaign 5 field

    Oscillation mode lifetimes in ksi Hydrae: Will strong mode damping limit asteroseismology of red giant stars?

    Full text link
    We introduce a new method to measure frequency separations and mode lifetimes of stochastically excited and damped oscillations, so-called solar-like oscillations. Our method shows that velocity data of the red giant star ksi Hya (Frandsen et al. 2002) support a large frequency separation between modes of roughly 7 microHz. We also conclude that the data are consistent with a mode lifetime of 2 days, which is so short relative to its pulsation period that none of the observed frequencies are unambiguous. Hence, we argue that the maximum asteroseismic output that can be obtained from these data is an average large frequency separation, the oscillation amplitude and the average mode lifetime. However, the significant discrepancy between the theoretical calculations of the mode lifetime (Houdek & Gough 2002) and our result based on the observations of ksi Hya, implies that red giant stars can help us better understand the damping and driving mechanisms of solar-like p-modes by convection.Comment: 9 pages, 11 figures, accepted for publication in A&

    Asteroseismology from space: the Delta Scuti star Theta2 Tauri monitored by the WIRE satellite

    Full text link
    The first intensive photometric time-series of a Delta Scuti star was obtained from space. Theta2 Tau was monitored with the star camera on the Wide-Field Infrared Explorer (WIRE) satellite. Twelve independent frequencies were detected down to the 0.5 mmag amplitude level. Their reality was investigated by searching for them using two different algorithms and by some internal checks. All the frequencies are in the range 10.8-14.6 c\d. The histogram of the frequency spacings shows that 81% are below 1.8 c\d; rotation may thus play a role in the mode excitation. The fundamental radial mode is not observed, although it is expected to occur in a region where the noise level is very low (55 micromag). The rms residual is about two times lower than that usually obtained from successful ground--based multisite campaigns. The comparison of the results of previous campaigns with the new ones establishes the amplitude variability of some modes.Comment: 7 pages (in A&A style), 7 eps figures. Accepted for A&A Main Journa
    corecore